Sistem pertidaksamaan linear yang telah dijelaskan sebelumnya dapat
diterapkan pada permasalahan sehari-hari dengan memodelkan
permasalahan tersebut ke dalam model matematika.
Sebagai ilustrasi perhatikan contoh berikut. PT. Samba Lababan
memproduksi ban motor dan ban sepeda. Proses pembuatan ban motor
melalui tiga mesin, yaitu 2 menit pada mesin I, 8 menit pada mesin II, dan
10 menit pada mesin III. Adapun ban sepeda diprosesnya melalui dua
mesin, yaitu 5 menit pada mesin I dan 4 menit pada mesin II. Tiap mesin
ini dapat dioperasikan 800 menit per hari. Untuk memperoleh keuntungan
maksimum, rencananya perusahaan ini akan mengambil keuntungan
Rp40.000,00 dari setiap penjualan ban motor dan Rp30.000,00 dari setiap
penjualan ban sepeda. Berdasarkan keuntungan yang ingin dicapai ini,
maka pihak perusahaan merencanakan banyak ban motor dan banyak
ban sepeda yang akan diproduksinya dengan merumuskan berbagai
kendala sebagai berikut.
Perusahaan tersebut memisalkan banyak ban motor yang diproduksi
sebagai x dan banyak ban sepeda yang diproduksi sebagai y, dengan x dan y
bilangan asli. Dengan menggunakan variabel x dan y tersebut, perusahaan
itu membuat rumusan kendala-kendala sebagai berikut.
Pada mesin I : 2x 5y 800 …. Persamaan 1
Pada mesin II : 8x 4y 800 .… Persamaan 2
Pada mesin III : 10 x 800 .… Persamaan 3
x, y bilangan asli : x 0, y 0 .… Persamaan 4
Fungsi tujuan (objektif) yang digunakan untuk memaksimumkan keuntungan
adalah f(x, y) 40.000x 30.000y. Dalam merumuskan masalah tersebut,
PT. Samba Lababan telah membuat model matematika dari suatu masalah
Tidak ada komentar:
Posting Komentar